Tagged: área

0

O logótipo

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 108 Tarefa 6

Enunciado

A Clara criou um logótipo, usando quatro quadrados geometricamente iguais, conforme indica a figura.
Três partes estão pintadas a vermelho e uma está pintada a azul.
Considera x o comprimento, em centímetros, do lado do quadrado azul.

  1. Seja y a área do quadrado azul em função de
0

O desenho do João

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 95 Ex. 10

Enunciado

O João fez um desenho numa folha de papel com 22 cm por 28 cm e colocou-lhe uma moldura de cartolina de largura constante, como vês na figura.

A área dessa moldura era de 336 cm2.
Qual foi a largura da moldura que o João …

0

O pai do João comprou um terreno

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 95 Ex. 8

Enunciado

O pai do João comprou um terreno com a forma de um quadrado.
Numa parte retangular desse terreno, o João vai fazer um jardim com 28 m2 de área, como mostra a figura.

Qual é a medida do lado do terreno?
Explica a tua resposta.

Resolução

0

Clube desportivo Os Medalhados

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 93 Ex. 7

Enunciado

No jardim do clube desportivo Os Medalhados, existem duas balizas como a representada na Figura1.

A Figura 2 representa um esquema da baliza da Figura 1. Os triângulos [ABC] e [DEF] são retângulos em A e em D, respetivamente. [BEC

0

Um quadrado [ABCD]

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 92 Ex. 1

Enunciado

Na figura, está representado um quadrado [ABCD].
Sabe-se que:

  • o comprimento do lado do quadrado é 10.
  • E, F, G e H são os pontos médios dos lados [AB], [BC], [CD] e [DA], respetivamente.
  1. Qual
0

Uma calçada

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 89 Ex. 19

Enunciado

O Sr. José foi contratado para fazer uma calçada à volta de dois lados de um terreno retangular. O terreno mede 20 metros por 30 metros, como indica a figura, e a calçada deve ter sempre a mesma largura.

Sabendo que o Sr. José dispõe de 72 …

0

Dois círculos

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 89 Ex. 17

Enunciado

Se adicionarmos 3 cm ao comprimento do raio de um círculo, obtemos outro cuja área é o quádruplo da área do primeiro.

Calcula o comprimento do raio do primeiro círculo.

Resolução >> Resolução

Seja \(r\) o comprimento, em cm, do raio do primeiro círculo.

As áreas dos …

0

Um jardim retangular

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 87 Ex. 12

Enunciado

Um jardim retangular tem 6 metros de comprimento e 4 metros de largura.
Este jardim foi aumentado de modo a ficar com uma área de 143 m2.
O acrescento a cada lado foi igual.

  1. Quantos metros foram acrescentados ao comprimento e à largura deste jardim?
0

Um trapézio isósceles

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 87 Ex. 10

Enunciado

Num trapézio isósceles com 36 cm2 de área, a base maior mede 10 cm e a base menor tem o dobro da altura.
Qual é o valor, arredondado às centésimas, do perímetro deste trapézio? Explica a tua resposta.

Resolução >> Resolução

Sabe-se que:

  • \(\overline {AB} =
0

Áreas e perímetros 2

Equações do 2.º grau: Matematicamente Falando 9 - Parte 2 Pág. 78 Tarefa 1 Ex. 2

Enunciado

Na figura, sabe-se que:

  • [ACEF] é um quadrado;
  • [BCDG] é um quadrado;
  • \(\overline {AC} = x\) cm;
  • \(\overline {BC} = 8\) cm.
  1. Escreve uma expressão simplificada para o perímetro da região sombreada.
    Mostra como chegaste à tua resposta.
  2. Mostra que se \(x = 9\) cm, então a