Tagged: derivadas

0

Mostre que a função, apesar de contínua, não tem derivada em $x = 0$

Derivadas: Aleph 11 - Volume 2 Pág. 82 Ex. 20

Enunciado

Mostre que a função $f$, de domínio $\mathbb{R}$, apesar de contínua, não tem derivada em $x = 0$:

\[\begin{array}{*{20}{c}}
{f\left( x \right)}& = &{\left\{ {\begin{array}{*{20}{c}}
x& \Leftarrow &{x > 0} \\
{ – {x^2}}& \Leftarrow &{x \leqslant 0}
\end{array}} \right.}
\end{array}\]

Resolução >> Resolução

<< EnunciadoLer mais
0

Mostre que a função não admite extremo em $x = 0$

Derivadas: Aleph 11 - Volume 2 Pág. 82 Ex. 19

Enunciado

Mostre que a derivada da função definida por \[\begin{array}{*{20}{c}}
{f\left( x \right)}& = &{\left\{ {\begin{array}{*{20}{c}}
x& \Leftarrow &{x > 0} \\
{{x^2} + 1}& \Leftarrow &{x \leqslant 0}
\end{array}} \right.}
\end{array}\]

muda de sinal quando passa da esquerda para a direita de zero, mas a função $f$ não tem máximo nem mínimo nesse ponto.

Resolução >> Resolução

<< EnunciadoLer mais
0

Mostre que

Derivadas: Aleph 11 - Volume 2 Pág. 82 Ex. 18

Enunciado

Mostre que:

  1. a função definida por $f\left( x \right) = {x^3} + 2$ é estritamente crescente em $\mathbb{R}$;
  2. a função definida por $g\left( x \right) = {x^3} – 2x + 12$ é estritamente crescente em $\left] {1, + \infty } \right[$;
  3. a função definida por $r\left( x \right) =  – {x^2} + 2$ é estritamente crescente em $\left] { – \infty ,0} \right[$;
  4. a função definida por $s\left( x \right) =  – \frac{3}{x}$ é estritamente crescente em
Ler mais
0

Uma escultura em cimento

Derivadas: Aleph 11 - Volume 2 Pág. 89 Ex. 5

Enunciado

Na figura, está representado um projeto de uma escultura em cimento para o jardim de uma escola, constituída por uma esfera colocada sobre um cubo.

Pretende-se que a escultura tenha uma altura total de $2$ metros.

Apresentam-se, a seguir, as vistas de frente de três possíveis concretizações do projeto.

Designemos por $x$ o raio da esfera (em metros).

  1. Indique, na forma de intervalo de números reais, o conjunto dos valores que a variável $x$ pode assumir.
  2. Mostre
Ler mais
0

Uma colónia de bactérias

Derivadas: Aleph 11 - Volume 2 Pág. 89 Ex. 4

Enunciado

A população inicial de uma colónia de bactérias é $100 000$ unidades.

Depois de $t$ horas, a colónia tem uma população $P\left( t \right)$, que obedece à lei polinomial seguinte:

\[P\left( t \right) = 10000\,{t^3}\]

  1. Qual é o número de bactérias após $10$ horas?
  2. Encontre a lei que indica a taxa de variação da população $P\left( t \right)$ em relação ao tempo $t$.
  3. Determine essa taxa de variação após $10$ horas.

Resolução >> Resolução

<< EnunciadoLer mais
0

Uma partícula move-se sobre uma reta

Derivadas: Aleph 11 - Volume 2 Pág. 88 Ex. 2

Enunciado

Uma partícula move-se sobre uma reta de forma que, após $t$ segundos, ela encontra-se a $s\left( t \right) = 2{t^2} + 3t$ metros da sua posição inicial.

  1. Determine a posição da partícula após $2$ s.
  2. Determine a posição da partícula após $3$ s.
  3. Calcule a velocidade média da partícula no intervalo de tempo $\left[ {2,3} \right]$ (em segundos).
  4. Calcule a velocidade instantânea em $t = 2$ s.

Resolução >> Resolução

<< EnunciadoLer mais
0

Duas regras de derivação

Derivadas: Aleph 11 - Volume 2 Pág. 73 Ex. 2

Enunciado

Determine regras de derivação que permitam calcular facilmente derivadas de funções do tipo:

\[\begin{array}{*{20}{c}}
{f\left( x \right) = \frac{k}{{x – a}}}&{}&{}&{g\left( x \right) = \frac{k}{{{x^2}}}}
\end{array}\]

Resolução >> Resolução

<< EnunciadoLer mais
0

Águias existentes numa reserva

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 228 Ex. 90

Enunciado

Num determinado ano (ano zero) havia, em certo parque natural, 318 águias.

Passado um ano, o número de águias era 417.

Sabendo que o número $P$ de águias existentes nessa reserva, quando é decorrido o tempo $t$, contado do início dos registos, é dado por uma função do tipo $$P(t) = \frac{a}{{1 + b{e^{ – t}}}}$$ com $t$ expresso em anos.

  1. Mostre, analiticamente, que $a \approx 509$ e $b \approx 0,6$, para o caso da população de
Ler mais
0

A representação gráfica de uma função real de variável real

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 226 Ex. 85

Enunciado

Segue-se a representação gráfica de uma função $f$ real de domínio $\mathbb{R}$.

O eixo das ordenadas e a reta de equação $y = mx + b$, representada a traço-ponto, são as únicas assíntotas do gráfico.

As retas tangentes ao gráfico de $f$, nos pontos de abcissas -2 e 1, são horizontais.

  1. Determine o contradomínio de $f$.
  2. Calcule o valor de $\mathop {\lim }\limits_{x \to  + \infty } \frac{{f(x)}}{x}$.
    Escreva uma equação da assíntota oblíqua.
  3. Indique, justificando, quais
Ler mais
0

Uma viga de aço

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 225 Ex. 83

Enunciado

Uma viga de aço com 255 decímetros de comprimento está assente sobre dois pilares com 150 decímetros de altura cada.

Quando, a $d$ decímetros do 1.º pilar, se coloca um peso de 115 kg sobre a viga, esta sofre uma depressão de valor $s$ (em decímetros) que nos é dada pela função assim definida: $$s(d) = 8,5 \times {10^{ – 7}}{d^2}\left( {255 – d} \right)$$

  1. Entre que valores pode variar $d$?
  2. Recorrendo à calculadora, determine a que
Ler mais
0

Um triângulo equilátero

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 224 Ex. 81

Enunciado

Considere o triângulo retângulo [ABC] de lado $a$.

Inscreve-se nesse triângulo um retângulo [MNPQ].

Faça-se $\overline {AM}  = x$.

Para que valor de $x$ a área do retângulo é máxima?

Resolução >> Resolução

<< EnunciadoLer mais
0

Um trapézio isósceles

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 224 Ex. 79

Enunciado

[ABCD] é um trapézio isósceles de área $5\sqrt 2 \,\,c{m^2}$.

Os ângulos agudos medem 45º.

Seja $x$ (em cm) a altura do trapézio e $P(x)$ o seu perímetro (em cm).

  1. Exprima $\overline {DH} $ e $\overline {CK} $ em função de $x$.
  2. Exprima $\overline {AD} $ e $\overline {BC} $ em função de $x$.
  3. Utilize a área do trapézio para exprimir $\overline {AB} $ em função de $x$.
  4. Mostre que $$P(x) = 2\sqrt 2 x + \frac{{10\sqrt
Ler mais
0

Dimensões de um triângulo de área máxima

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 223 Ex. 75

Enunciado

Considere a parábola definida por $y =  – {x^2} + 9$.

Supondo que a unidade adotada é o centímetro, determine as dimensões do retângulo [EFGH] de área máxima, sabendo que E e F são pontos da parábola e G e H são pontos do eixo das abcissas.

Resolução >> Resolução

<< EnunciadoLer mais
0

Uma trave de madeira

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 222 Ex. 73

Enunciado

Num canto de um terreno murado pretende-se delimitar com uma trave de madeira a maior área de terreno possível.

Sabendo que a trave mede 5 metros, em que posição deve ser colocada?

Resolução >> Resolução

Para $0 < x < 5$ e $0 < y < 5$, temos: $y = \sqrt {25 – {x^2}} $.

Logo, a área do terreno pode ser expressa por $$A(x) = \frac{{x\sqrt {25 – {x^2}} }}{2},{\text{com }}0 < x < 5$$

Ora, … Ler mais

0

Considere a função real de variável real

Cálculo diferencial: Infinito 12 A - Parte 2 Pág. 177 Ex. 108

Enunciado

Considere a função real de variável real $$f:x \to \ln \left( {{e^x} – 1} \right)$$

  1. Determine o domínio e zeros de $f$.
  2. Determine as equações das assíntotas ao gráfico de $f$.
  3. Estude a monotonia da função.
  4. Esboce o gráfico de $f$.
  5. Determine uma equação da reta tangente ao gráfico de $f$ no ponto de abcissa $\ln 2$.
  6. A partir do gráfico obtido, construa os gráficos de $f( – x)$, $\left| {f(x)} \right|$, $2\,f(x)$ e $f(x – 2)$.
Ler mais