Tagged: parábola

0

Partes dos gráficos de duas funções e um retângulo

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 125 Ex. 6

Enunciado

No referencial cartesiano da figura, estão representadas partes dos gráficos de duas funções, f e g, e um trapézio.
Sabe-se que:

  • a função f é definida por \(f\left( x \right) = x\);
  • a função g é definida por \(g\left( x \right) = 3{x^2}\);
  • o quadrilátero [
0

Partes dos gráficos de duas funções e um trapézio retângulo

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 123 Ex. 10

Enunciado

Na figura, estão representadas, num referencial cartesiano de origem O, partes dos gráficos de duas funções, f e g, bem como o trapézio retângulo [ABCD].
Sabe-se que:

  • os pontos A e D pertencem ao eixo das ordenadas;
  • a função f é definida por \(f\left( x
0

Partes dos gráficos de duas funções

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 117 Ex. 11

Enunciado

Na figura, estão representadas, num referencial cartesiano, partes dos gráficos de duas funções, f e g.
Sabe-se que:

  • o ponto O é a origem do referencial;
  • o gráfico da função g é uma reta que passa na origem do referencial;
  • a função f é definida por
0

Uma parábola e um triângulo

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 113 Ex. 9

Enunciado

Na figura, estão representados, num referencial cartesiano, parte do gráfico de uma função quadrática f e o triângulo [OAB].
Sabe-se que:

  • o ponto O é a origem do referencial;
  • o ponto A pertence ao gráfico da função f e tem abcissa igual a 2;
  • o
0

Resolve graficamente as equações seguintes

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 113 Ex. 8

Enunciado

Resolve graficamente as equações seguintes.

  1. \(2{x^2} + 5x – 3 = 0\)
     
  2. \( – {x^2} – 4x + 5 = 0\)
     
  3. \(4{x^2} – 2x – 2 = 0\)

Resolução >> Resolução

  1. \(2{x^2} + 5x – 3 = 0\)
    \[\begin{array}{*{20}{l}}{2{x^2} + 5x – 3 = 0}& \Leftrightarrow &{\underbrace
0

Determina analiticamente as coordenadas dos pontos de interseção dos gráficos de f e g

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 113 Ex. 7

Enunciado

Considera as funções f e g, definidas por \(f\left( x \right) = {x^2}\) e \(g\left( x \right) = – 6x – 8\).
Determina analiticamente as coordenadas dos pontos de interseção dos gráficos de f e g.

Resolução >> Resolução

Comecemos por determinar as abcissas dos …

0

Uma parábola de eixo vertical e vértice na origem

Proporcionalidade inversa e Funções algébricas: Matematicamente Falando 9 - Parte 2 Pág. 112 Ex. 4

Enunciado

A função g está representada graficamente no referencial cartesiano da figura por uma parábola de eixo vertical e que passa na origem.
O ponto \(A\left( { – 2,\;2} \right)\) pertence ao gráfico de g.

Determina uma expressão algébrica de g.

Resolução >> Resolução

Os gráficos