Category: 11.º Ano

0

Uma função quadrática e uma função afim

Mais funções: Aleph 11 - Volume 2 Pág. 127 Ex. 12

Enunciado

Na figura estão representadas:

  • parte do gráfico de uma função quadrática $f$;
     
  • parte do gráfico de uma função afim $g$.

Determine o domínio de cada uma das seguintes funções: $\frac{f}{g}$ e $\frac{g}{f}$.

Resolução >> Resolução

\[{D_{\frac{f}{g}}} = {D_f} \cap {D_g} \cap \left\{ {x \in \mathbb{R}:g\left( x \right) …

Considere as funções 0

Considere as funções

Mais funções: Aleph 11 - Volume 2 Pág. 127 Ex. 11

Enunciado

Considere as funções definidas por:

 

\[\begin{array}{*{20}{r}}
  {\begin{array}{*{20}{l}}
  {f:}&{\mathbb{R} \to \mathbb{R}} \\
  {}&{x \to {x^2}}
\end{array}}&{}&{\begin{array}{*{20}{l}}
  {g:}&{\mathbb{R}\backslash \left\{ { – 1} \right\} \to \mathbb{R}} \\
  {}&{x \to \frac{1}{{x + 1}}}
\end{array}}&{}&{\begin{array}{*{20}{l}}
  {h:}&{\mathbb{R} \to \mathbb{R}} \\
  {}&{x \to {x^2} – x}
\end{array}}
\end{array}\]

Caracterize as seguintes funções:

\[\begin{array}{*{20}{l}}…

0

Três funções: $f$, $g$ e $\frac{f}{g}$

Mais funções: Aleph 11 - Volume 2 Pág. 125 Ex. 10

Enunciado
Sejam $f$ e $g$ duas funções definidas por: \[\begin{array}{*{20}{c}}
  {f\left( x \right) = {x^2} – 4}&{\text{e}}&{g\left( x \right) = x + 2}
\end{array}\]

Caracterize a função $\frac{f}{g}$ e estude o seu sinal, relacionando-o com o sinal quer da função $f$ quer da função $g$.

Resolução >> Resolução

0

Duas funções, $s$ e $t$

Mais funções: Aleph 11 - Volume 2 Pág. 122 Ex. 9

Enunciado

Na figura estão representadas graficamente as funções $s$ e $t$.

Determine:

  1. $s\left( 0 \right)$
     
  2. $t\left( 5 \right)$
     
  3. $\left( {s + t} \right)\left( 3 \right)$
     
  4. $\left( {s – t} \right)\left( 3 \right)$

Resolução >> Resolução

  1. $s\left( 0 \right) = 2$
     
  2. $t\left( 5 \right) = 0$
     
  3. $\left( {s +
Verifique se são iguais as funções 0

Verifique se são iguais as funções

Mais funções: Aleph 11 - Volume 2 Pág. 118 Ex. 8

Enunciado

Verifique se são iguais os seguintes pares de funções reais de variável real:

  1. \[\begin{array}{*{20}{l}}
      {f\left( x \right) = \frac{{2 – x}}{{{x^2} – 4}}}&{\text{e}}&{g\left( x \right) = \frac{{ – 1}}{{x + 2}}}
    \end{array}\]
  2. \[\begin{array}{*{20}{l}}
      {f\left( x \right) = \frac{x}{{x – 1}}}&{\text{e}}&{g\left( x \right) = \frac{{{x^2} – x}}{{{{\left( {x
0

A continuidade da função

Mais funções: Aleph 11 - Volume 2 Pág. 116 Ex. 7

Enunciado

Com a ajuda da calculadora gráfica, estude a continuidade das seguintes funções de acordo com os valores que o parâmetro real $m$ toma.

\[\begin{array}{*{20}{c}}
  {h\left( x \right) = \left\{ {\begin{array}{*{20}{l}}
  {\frac{m}{x}}& \Leftarrow &{0 < x \leqslant 2} \\
  { – {x^2} + 10x + 3}& \Leftarrow &{x …

0

Defina a função por ramos

Mais funções: Aleph 11 - Volume 2 Pág. 116 Ex. 6

Enunciado

Representação gráfica da função $f$

Considere uma função $f$, real de variável real, de domínio $\mathbb{R}$, cuja representação gráfica se apresenta ao lado.

  1. Complete a tabela:
     
    $x$        
    $f\left( x \right)$ $0$ $1$ $3$ $5$

     

  2. Determine a equação reduzida de cada uma das retas: AB, BC e
0

Defina sem usar o símbolo de módulo

Mais funções: Aleph 11 - Volume 2 Pág. 116 Ex. 5

Enunciado

Defina, sem usar o símbolo de módulo, e represente graficamente, cada uma das seguintes funções:

  1. $f(x) = \left| {x – 1} \right| + 2$
     
  2. $g(x) =  – \left| {3{x^2} – 2x – 1} \right|$
     
  3. $h(x) =  – \left| {x\left( {x – 2} \right)\left( {x + 1} \right)}
0

Uma bola desce um plano inclinado

Funções racionais: Aleph 11 - Volume 2 Pág. 64 Ex. 5

Enunciado

Uma bola desce um plano inclinado, onde foi espalhado um gel que dificulta o movimento.

A distância, $d$, em centímetros, da bola ao topo do plano inclinado em função do tempo, $t$, em segundos, é dada por: \[d\left( t \right) = 1,3{t^2} – t + 2\]

  1. Represente
Resolva, em $\mathbb{R}$, a equação 0

Resolva, em $\mathbb{R}$, a equação

Funções racionais: Aleph 11 - Volume 2 Pág. 53 Ex. 2

Enunciado

Resolva, em $\mathbb{R}$, a equação seguinte: \[{\frac{{2x + 4}}{{x – 3}} = \frac{{x – 2}}{{x + 5}}}\]

Resolução >> Resolução

\[\begin{array}{*{20}{l}}{\frac{{2x + 4}}{{\mathop {x{\rm{ }} – {\rm{ }}3}\limits_{\left( {x + 5} \right)} }} = \frac{{x – 2}}{{\mathop {x{\rm{ }} + {\rm{ }}5}\limits_{\left( {x – 3} \right)} }}}& …

0

Concentração do composto

Funções racionais: Aleph 11 - Volume 2 Pág. 53 Ex. 1

Enunciado

Juntou-se ácido puro a $30$ gramas de uma substância $30$% ácida.

Seja $x$ o número de gramas de ácido puro adicionado.

  1. Determine uma expressão que represente a concentração do composto formado.
     
  2. Represente graficamente a função da alínea anterior.
     
  3. Entre que valores varia a função?
     
  4. Qual a quantidade
Determine o conjunto solução de cada uma das condições 0

Determine o conjunto solução de cada uma das condições

Funções racionais: Aleph 11 - Volume 2 Pág. 52 Ex. 12

Enunciado

Considere a função $f$ definida por: \[f\left( x \right) = \frac{x}{{{x^2} – 3x + 2}}\]

Determine o conjunto solução de cada uma das inequações:

  1. $f\left( x \right) > 0$
     
  2. $f\left( {x – 2} \right) > 0$

Resolução >> Resolução

  1.  
    \[\begin{array}{*{20}{l}}
      {f\left( x \right) > 0}& \Leftrightarrow &{\frac{x}{{{x^2}
0

Considera a função $g\left( x \right) = \frac{1}{x}$

Funções racionais: Aleph 11 - Volume 2 Pág. 52 Ex. 10

Enunciado

Considera a função $g\left( x \right) = \frac{1}{x}$, de domínio $\mathbb{R}\backslash \left\{ 0 \right\}$.

  1. Que transformações geométricas se devem efetuar a partir do gráfico de $g$ para se obter o gráfico da função \[f\left( x \right) = \frac{{x – 1}}{{2x – 3}}\] de domínio $\mathbb{R}\backslash \left\{ {\frac{3}{2}}
0

Três funções

Funções racionais: Aleph 11 - Volume 2 Pág. 51 Ex. 9

Enunciado

  1. Represente graficamente, no mesmo referencial, as seguintes funções:
    \[\begin{array}{*{20}{r}}
      {f\left( x \right) = x + 1}&{\text{;}}&{g\left( x \right) = f\left( {\frac{1}{x}} \right)}&{\text{e}}&{h\left( x \right) = \frac{1}{{f\left( x \right)}}}
    \end{array}\]
  2. Determine o domínio de cada uma das funções anteriores.
     
  3. Compare os três gráficos.
    Quais os pontos dos gráficos
0

Determine as assíntotas do gráfico das seguintes funções

Funções racionais: Aleph 11 - Volume 2 Pág. 51 Ex. 8

Enunciado

Determine as assíntotas do gráfico de cada uma das seguintes funções:

\[\begin{array}{*{20}{c}}
  {f\left( x \right) = \frac{{2x – 1}}{{x + 3}}}&{\text{e}}&{g\left( x \right) = \frac{{2{x^2} – 7x + 3}}{{x – 3}}}
\end{array}\]

Resolução >> Resolução

\[{f\left( x \right) = \frac{{2x – 1}}{{x + 3}}}\]

  • ${D_f} = \left\{
0

Uma peça de forma cilíndrica

Funções racionais: Aleph 11 - Volume 2 Pág. 51 Ex. 6

Enunciado

Uma empresa de alumínio pretende fabricar uma peça de forma cilíndrica, com capacidade de $500$ cm3.

As tampas superior e inferior são feitas de alumínio especial que custa $5$ cêntimos por centímetro quadrado.

A superfície lateral é feita de material mais barato, que custa $2$ …

Considere a função $h$ 0

Considere a função $h$

Funções racionais: Aleph 11 - Volume 2 Pág. 50 Ex. 5

Enunciado

Considere a função $h$, definida por: \[h\left( x \right) = \frac{{2{x^2} + x – 1}}{{x – 3}}\]

  1. Escreva $h\left( x \right)$ na forma \[a + bx + \frac{c}{{x – 3}}\]
     
  2. A partir da decomposição obtida na alínea anterior, determine:
    \[\mathop {\lim }\limits_{x \to  + \infty } h\left(
0

Uma espécie rara de insetos

Funções racionais: Aleph 11 - Volume 2 Pág. 50 Ex. 4

Enunciado

Uma espécie rara de insetos foi descoberta na floresta tropical do Brasil.

Ambientalistas colocaram os insetos numa área protegida.

A população de insetos no mês $t$, após terem sido colocados na área protegida, é dado pela função: \[P\left( t \right) = \frac{{45\left( {1 + 0,6t} \right)}}{{3 + …

Resolva, em $\mathbb{R}$, as seguintes inequações 0

Resolva, em $\mathbb{R}$, as seguintes inequações

Funções racionais: Aleph 11 - Volume 2 Pág. 50 Ex. 3

Enunciado

Resolva, em $\mathbb{R}$, as seguintes inequações:

  1. $\frac{{x + 1}}{{x – 2}} > 0$
     
  2. $\frac{{ – 5}}{{1 – 2x}} < 0$
     
  3. $\frac{2}{{{x^2} + 2x}} – \frac{{x + 1}}{{x + 2}} < 0$

Resolução >> Resolução

  1.  
    \[\begin{array}{*{20}{l}}
      {\frac{{x + 1}}{{x – 2}} > 0}& \Leftrightarrow &{\begin{array}{*{20}{l}}
      {\left\{ {\begin{array}{*{20}{l}}
      {x
0

Determine graficamente

Funções racionais: Aleph 11 - Volume 2 Pág. 49 Ex. 12

Enunciado

Determine, graficamente, as abcissas (com aproximação às milésimas) dos pontos de interseção dos gráficos das funções seguintes: \[\begin{array}{*{20}{c}}
  {f\left( x \right) = \frac{{{x^3} + 4x – 2}}{{{x^2} – 3}}}&{\text{e}}&{g\left( x \right) = \frac{{ – 2x + 1}}{{2{x^3} + 3{x^2} – 7x + 1}}}
\end{array}\]

Resolução >> Resolução