As funções de Heaviside e rampa

Mais funções: Aleph 11 - Volume 2 Pág. 139 Ex. 12

Enunciado

 As funções de Heaviside e rampa são definidas, respetivamente, por: \[\begin{array}{*{20}{c}}
{H\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
{\frac{1}{2}}& \Leftarrow &{x = 0} \\
1& \Leftarrow &{x > 0}
\end{array}} \right.}&{\text{e}}&{R\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}
\end{array}\]

Mostre que:

  1. $R\left( x \right) = x\,H\left( x \right)$
  2. $R\left( x \right) = \frac{{x + \left| x \right|}}{2}$
  3. $\left( {R \circ R} \right)\left( x \right) = R\left( x \right)$

Resolução

\[\begin{array}{*{20}{c}}
{H\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
{\frac{1}{2}}& \Leftarrow &{x = 0} \\
1& \Leftarrow &{x > 0}
\end{array}} \right.}&{\text{e}}&{R\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}
\end{array}\]

  1. \[\begin{array}{*{20}{c}}
    {x\,H\left( x \right)}& = &{x \times \left\{ {\begin{array}{*{20}{c}}
    0& \Leftarrow &{x < 0} \\
    {\frac{1}{2}}& \Leftarrow &{x = 0} \\
    1& \Leftarrow &{x > 0}
    \end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
    {x \times 0}& \Leftarrow &{x < 0} \\
    {x \times \frac{1}{2}}& \Leftarrow &{x = 0} \\
    {x \times 1}& \Leftarrow &{x > 0}
    \end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
    0& \Leftarrow &{x < 0} \\
    0& \Leftarrow &{x = 0} \\
    x& \Leftarrow &{x > 0}
    \end{array}} \right.}& = &{R\left( x \right)}
    \end{array}\]
  2. \[\begin{array}{*{20}{c}}
    {\frac{{x + \left| x \right|}}{2}}& = &{\left\{ {\begin{array}{*{20}{c}}
    {\frac{{x + \left( { – x} \right)}}{2}}& \Leftarrow &{x \leqslant 0} \\
    {\frac{{x + x}}{2}}& \Leftarrow &{x > 0}
    \end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
    0& \Leftarrow &{x \leqslant 0} \\
    x& \Leftarrow &{x > 0}
    \end{array}} \right.}& = &{R\left( x \right)}
    \end{array}\]
  3. \[\begin{array}{*{20}{c}}
    {\left( {R \circ R} \right)\left( x \right)}& = &{R\left( {R\left( x \right)} \right)}& = &{R\left( {\left\{ {\begin{array}{*{20}{c}}
    0& \Leftarrow &{x \leqslant 0} \\
    x& \Leftarrow &{x > 0}
    \end{array}} \right.} \right)}& = &{R\left( x \right)}
    \end{array}\]

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.