As funções de Heaviside e rampa
Mais funções: Aleph 11 - Volume 2 Pág. 139 Ex. 12
As funções de Heaviside e rampa são definidas, respetivamente, por: \[\begin{array}{*{20}{c}}
{H\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
{\frac{1}{2}}& \Leftarrow &{x = 0} \\
1& \Leftarrow &{x > 0}
\end{array}} \right.}&{\text{e}}&{R\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}
\end{array}\]
Mostre que:
- $R\left( x \right) = x\,H\left( x \right)$
- $R\left( x \right) = \frac{{x + \left| x \right|}}{2}$
- $\left( {R \circ R} \right)\left( x \right) = R\left( x \right)$
\[\begin{array}{*{20}{c}}
{H\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
{\frac{1}{2}}& \Leftarrow &{x = 0} \\
1& \Leftarrow &{x > 0}
\end{array}} \right.}&{\text{e}}&{R\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}
\end{array}\]
- \[\begin{array}{*{20}{c}}
{x\,H\left( x \right)}& = &{x \times \left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
{\frac{1}{2}}& \Leftarrow &{x = 0} \\
1& \Leftarrow &{x > 0}
\end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
{x \times 0}& \Leftarrow &{x < 0} \\
{x \times \frac{1}{2}}& \Leftarrow &{x = 0} \\
{x \times 1}& \Leftarrow &{x > 0}
\end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x < 0} \\
0& \Leftarrow &{x = 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}& = &{R\left( x \right)}
\end{array}\] - \[\begin{array}{*{20}{c}}
{\frac{{x + \left| x \right|}}{2}}& = &{\left\{ {\begin{array}{*{20}{c}}
{\frac{{x + \left( { – x} \right)}}{2}}& \Leftarrow &{x \leqslant 0} \\
{\frac{{x + x}}{2}}& \Leftarrow &{x > 0}
\end{array}} \right.}& = &{\left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.}& = &{R\left( x \right)}
\end{array}\] - \[\begin{array}{*{20}{c}}
{\left( {R \circ R} \right)\left( x \right)}& = &{R\left( {R\left( x \right)} \right)}& = &{R\left( {\left\{ {\begin{array}{*{20}{c}}
0& \Leftarrow &{x \leqslant 0} \\
x& \Leftarrow &{x > 0}
\end{array}} \right.} \right)}& = &{R\left( x \right)}
\end{array}\]














