Resolva, em $\mathbb{C}$, as equações

Números complexos: Infinito 12 A - Parte 3 Pág. 105 Ex. 65

Enunciado

Resolva, em $\mathbb{C}$, as equações:

  1. $z – \frac{{2i}}{z} = 0$
  2. ${z^3} – i{z^2} – z + i = 0$

Resolução

  1. Ora,
    $$\begin{array}{*{20}{l}}
    {z – \frac{{2i}}{z} = 0}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {{z^2} – 2i = 0}& \wedge &{z \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {{z^2} = 2i}& \wedge &{z \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {{z^2} = 2\operatorname{cis} \left( {\frac{\pi }{2}} \right)}& \wedge &{z \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = \sqrt 2 \operatorname{cis} \left( {\frac{{\tfrac{\pi }{2}}}{2}} \right)}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{\tfrac{\pi }{2}}}{2} + \frac{{2\pi }}{2}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = \sqrt 2 \operatorname{cis} \left( {\frac{\pi }{4}} \right)}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{5\pi }}{4}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 1 + i}& \vee &{z =  – 1 – i}
    \end{array}}
    \end{array}$$
  2. Ora,
    $$\begin{array}{*{20}{l}}
    {{z^3} – i{z^2} – z + i = 0}& \Leftrightarrow &{i\left( {1 – {z^2}} \right) – z\left( {1 – {z^2}} \right) = 0} \\
    {}& \Leftrightarrow &{\left( {1 – {z^2}} \right)\left( {i – z} \right) = 0} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {1 – {z^2} = 0}& \vee &{i – z = 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {{z^2} = 1}& \vee &{z = i}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z =  – 1}& \vee &{z = 1}& \vee &{z = i}
    \end{array}}
    \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.