A Casinha da Matemática Blog

0

Ida ao cinema

Diagramas de extremos e quartis: Matematicamente Falando 8 - Pág. 220 Ex. 3

Enunciado

À saída do cinema, a Marta fez um inquérito para saber quantas vezes as pessoas tinham ido ao cinema no mês anterior. Com os dados recolhidos construiu a seguinte tabela.

  1. Quantas pessoas responderam à Marta?
  2. Em média, quantas vezes as mulheres foram ao cinema no mês passado? E os homens?
  3. Constrói dois diagramas de extremos e quartis que traduzam a ida ao cinema, no mês passado, para as mulheres e para os homens.
  4. Com base na observação
Ler mais
0

As classificações do último teste

Diagramas de extremos e quartis: Matematicamente Falando 8 - Pág. 219 Tarefa 3

Enunciado

As classificações no último teste de Matemática da turma da Marta foram as seguintes.

  1. Calcula a média das classificações.
  2. Organiza os dados num diagrama de caule-e-folhas.
  3. Quais são os valores extremos dos dados observados? O que representam?
  4. Escreve os dados por ordem crescente. Determina o valor da mediana e indica que significado tem esse valor.
  5. Determina o 1.º quartil e o 3.º quartil. Que significado têm esses valores? Determina a diferença entre esses valores e escreve
Ler mais
0

Os animais domésticos

Diagramas de extremos e quartis: Matematicamente Falando 8 - Pág. 215 Tarefa 2

Enunciado

Os alunos da turma do Manuel perguntaram a 50 colegas da escola que animal doméstico tinham e registaram os resultados na folha ao lado.

  1. Constrói um gráfico de barras com a informação obtida.
  2. Qual é a percentagem de colegas inquiridos que não possuem animal doméstico?
  3. Dos colegas que responderam, qual é o animal que surgiu em menor número nas respostas?
  4. Se outro grupo de alunos tivesse feito a mesma pergunta a outros 50 colegas, o que é
Ler mais
0

Classificação no teste de Matemática

Diagramas de extremos e quartis: Matematicamente Falando 8 - Pág. 215 Tarefa 1

Enunciado

A professora do Manuel está a observar as classificações nos testes de Matemática de quatro alunos do 10.º ano.

Registou a sua apreciação sobre os quatro alunos na folha ao lado para entregar à Diretora de Turma.

  1. Associa a cada aluno a apreciação da professora.
  2. Calcula a média das classificações de cada aluno.
  3. É possível distinguir os alunos apenas pela mediana das suas classificações? Porquê?
  4. Para cada aluno, determina a amplitude das suas classificações. Somente pela leitura
Ler mais
0

Caminhando

Equações literais e sistemas: Matematicamente Falando 8 - Pág. 210 Tarefa 13

Enunciado

A figura mostra as pegadas de um homem. O comprimento do passo, P, é a distância entre a parte de trás de duas pegadas consecutivas.

Para os homens, a fórmula estabelece uma relação aproximada entre n e P, em que

  • n = número de passos por minuto, e
  • P = comprimento do passo em metros.
  1. Se esta fórmula se aplicar ao caminhar do Pedro e ele der 70 passos por minuto, qual é o comprimento,
Ler mais
0

Caixas com bolos tradicionais

Equações literais e sistemas: Matematicamente Falando 8 - Pág. 209 Ex. 5

Enunciado

Numa banca de um arraial, estão à venda caixas com bolos tradicionais. Existem caixas com três bolos e existem caixas com quatro bolos.

Sabe-se ainda que:

  • as caixas vazias têm todas a mesma massa;
  • os bolos têm, também, todos a mesma massa;
  • uma caixa com quatro bolos tem uma massa de 310 gramas;
  • duas caixas, cada uma com três bolos, têm uma massa total de 470 gramas;

Qual é a massa, em gramas, de cada caixa vazia?… Ler mais

0

Duas retas representadas num referencial cartesiano

Equações literais e sistemas: Matematicamente Falando 8 - Pág. 209 Ex. 4

Enunciado

Na figura, estão representadas, num referencial cartesiano, as retas r e s.

Sabe-se que:

  • a reta r é definida por \(y = 0,6x\);
  • a reta s é definida por \(y = – 1,2x + 4,5\);
  • o ponto A é o ponto de interseção da reta s com o eixo das abcissas;
  • o ponto B é o ponto de interseção da reta s com o eixo das ordenadas;
  • o ponto I é o ponto de interseção das
Ler mais
0

A solução de outro sistema de equações

Equações literais e sistemas: Matematicamente Falando 8 - Pág. 208 Ex. 3

Enunciado

Considera o seguinte sistema de equações.

\[\left\{ {\begin{array}{*{20}{l}}{x + y = 3}\\{2y = \frac{{x + y}}{3}}\end{array}} \right.\]

Qual é o par ordenado (x, y) que é solução do sistema?
Mostra como chegaste à tua resposta.

Resolução >> Resolução

<< EnunciadoLer mais
0

A solução de um sistema de equações

Equações literais e sistemas: Matematicamente Falando 8 - Pág. 208 Ex. 2

Enunciado

Considera o seguinte sistema de equações.

\[\left\{ {\begin{array}{*{20}{l}}{\frac{x}{2} + y = 2}\\{x + 3y = 5}\end{array}} \right.\]

Qual dos quatro pares ordenados (x, y) seguintes é a solução do sistema?

[A] \(\left( { – 1,2} \right)\)        [B] \(\left( {1,2} \right)\)        [C] \(\left( { – 2,1} \right)\)        [D] \(\left( {2,1} \right)\)

Resolução >> Resolução

<< EnunciadoLer mais