Resolva, em $\mathbb{C}$, as equações

Números complexos: Infinito 12 A - Parte 3 Pág. 144 Ex. 63

Enunciado

Resolva, em $\mathbb{C}$, as equações:

  1. ${z^4}.\overline z  = 32i$
  2. ${z^3} + \left( {\sqrt 3  + i} \right)z = 0$

Resolução

  1. $${z^4}.\overline z  = 32i$$
    Considerando $z = \rho \operatorname{cis} \theta $, temos:
    $$\begin{array}{*{20}{l}}
    {{{\left( {\rho \operatorname{cis} \theta } \right)}^4} \times \overline {\rho \operatorname{cis} \theta }  = 32i}& \Leftrightarrow &{{\rho ^4}\operatorname{cis} \left( {4\theta } \right) \times \rho \operatorname{cis} \left( { – \theta } \right) = 32\operatorname{cis} \left( {\frac{\pi }{2}} \right)} \\
    {}& \Leftrightarrow &{{\rho ^5}\operatorname{cis} \left( {3\theta } \right) = 32\operatorname{cis} \left( {\frac{\pi }{2}} \right)} \\
    {}& \Leftrightarrow &{\left\{ {\begin{array}{*{20}{l}}
    {{\rho ^5} = 32} \\
    {3\theta  = \frac{\pi }{2} + 2k\pi ,k \in \mathbb{Z}}
    \end{array}} \right.} \\
    {}& \Leftrightarrow &{\left\{ {\begin{array}{*{20}{l}}
    {\rho  = \sqrt[5]{{32}}} \\
    {\theta  = \frac{\pi }{6} + \frac{{2k\pi }}{3},k \in \mathbb{Z}}
    \end{array}} \right.} \\
    {}& \Leftrightarrow &{\left\{ {\begin{array}{*{20}{l}}
    {\rho  = 2} \\
    {\theta  = \frac{\pi }{6} + \frac{{2k\pi }}{3},k \in \mathbb{Z}}
    \end{array}} \right.}
    \end{array}$$
    Logo, $$\begin{array}{*{20}{l}}
    {{z^4}.\overline z  = 32i}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 2\operatorname{cis} \frac{\pi }{6}}& \vee &{z = 2\operatorname{cis} \frac{{5\pi }}{6}}& \vee &{z = 2\operatorname{cis} \frac{{3\pi }}{2}}
    \end{array}}
    \end{array}$$
    ­
  2. Ora,
    $$\begin{array}{*{20}{l}}
    {{z^3} + \left( {\sqrt 3  + i} \right)z = 0}& \Leftrightarrow &{\left( {{z^2} + \sqrt 3  + i} \right)z = 0} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 0}& \vee &{{z^2} + \sqrt 3  + i = 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 0}& \vee &{{z^2} =  – \sqrt 3  – i}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 0}& \vee &{{z^2} = 2\operatorname{cis} \frac{{7\pi }}{6}}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 0}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{\tfrac{{7\pi }}{6}}}{2}} \right)}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{\tfrac{{7\pi }}{6}}}{2} + \frac{{2\pi }}{2}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {z = 0}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{7\pi }}{{12}}} \right)}& \vee &{z = \sqrt 2 \operatorname{cis} \left( {\frac{{19\pi }}{{12}}} \right)}
    \end{array}}
    \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.