Determine as raízes da equação

Números complexos: Infinito 12 A - Parte 3 Pág. 143 Ex. 62

Enunciado

Dado o número complexo $w = 27\operatorname{cis} \frac{\pi }{3}$, determine as raízes da equação ${z^3} + w = 0$, representando as imagens no plano de Argand.

Resolução

$$\begin{array}{*{20}{l}}
{{z^3} + 27\operatorname{cis} \frac{\pi }{3} = 0}& \Leftrightarrow &{{z^3} =  – 27\operatorname{cis} \frac{\pi }{3}} \\
{}& \Leftrightarrow &{{z^3} = 27\operatorname{cis} \left( {\frac{\pi }{3} + \pi } \right)} \\
{}& \Leftrightarrow &{\begin{array}{*{20}{l}}
{z = \sqrt[3]{{27}}\operatorname{cis} \left( {\frac{{\tfrac{{4\pi }}{3}}}{3}} \right)}& \vee &{z = \sqrt[3]{{27}}\operatorname{cis} \left( {\frac{{\tfrac{{4\pi }}{3}}}{3} + \frac{{2\pi }}{3}} \right)}& \vee &{z = \sqrt[3]{{27}}\operatorname{cis} \left( {\frac{{\tfrac{{4\pi }}{3}}}{3} + \frac{{4\pi }}{3}} \right)}
\end{array}} \\
{}& \Leftrightarrow &{\begin{array}{*{20}{l}}
{z = 3\operatorname{cis} \left( {\frac{{4\pi }}{9}} \right)}& \vee &{z = 3\operatorname{cis} \left( {\frac{{10\pi }}{9}} \right)}& \vee &{z = 3\operatorname{cis} \left( {\frac{{16\pi }}{9}} \right)}
\end{array}}
\end{array}$$

As raízes da equação \({z^3} + 27{\mathop{\rm cis}\nolimits} \frac{\pi }{3} = 0\).

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.