Calcula
Números inteiros: Matematicamente Falando 7 - Pág. 43 Ex. 3
Enunciado
Calcula:
- $\sqrt {16} + \sqrt 1 + \sqrt 0 $
- $12 – \sqrt {121} $
- $\sqrt {1600} + 5$
- ${\left( {\sqrt {484} } \right)^2}$
- $\sqrt[3]{{512}} + \sqrt 9 – 10$
- $\sqrt[3]{{1000}} + \sqrt[3]{{27}}$
- $\frac{{\sqrt {36} }}{3} + \frac{{18}}{{\sqrt {81} }}$
- ${\left( { – 5} \right)^2} \times {\left( { – 5} \right)^4} \times \frac{2}{{\sqrt {25} }}$
Resolução
- Ora,
$$\begin{array}{*{20}{l}} {\sqrt {16} + \sqrt 1 + \sqrt 0 }& = &{4 + 1 + 0} \\ {}& = &5 \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {12 – \sqrt {121} }& = &{12 – 11} \\ {}& = &1 \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {\sqrt {1600} + 5}& = &{40 + 5} \\ {}& = &{45} \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {{{\left( {\sqrt {484} } \right)}^2}}& = &{{{\left( {22} \right)}^2}} \\ {}& = &{484} \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {\sqrt[3]{{512}} + \sqrt 9 – 10}& = &{8 + 3 – 10} \\ {}& = &1 \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {\sqrt[3]{{1000}} + \sqrt[3]{{27}}}& = &{10 + 3} \\ {}& = &{13} \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {\frac{{\sqrt {36} }}{3} + \frac{{18}}{{\sqrt {81} }}}& = &{\frac{6}{3} + \frac{{18}}{9}} \\ {}& = &{2 + 2} \\ {}& = &4 \end{array}$$ - Ora,
$$\begin{array}{*{20}{l}} {{{\left( { – 5} \right)}^2} \times {{\left( { – 5} \right)}^4} \times \frac{2}{{\sqrt {25} }}}& = &{{{\left( { – 5} \right)}^6} \times \frac{2}{5}} \\ {}& = &{\frac{{{5^6}}}{5} \times 2} \\ {}& = &{{5^5} \times 2} \\ {}& = &{3125 \times 2} \\ {}& = &{6250} \end{array}$$