Calcule o produto na forma trigonométrica
Números complexos: Infinito 12 A - Parte 3 Pág. 94 Ex. 54
Sendo $$\begin{array}{*{20}{l}}
{{z_1} = 3\operatorname{cis} \left( { – \frac{\pi }{3}} \right)}&{\text{;}}&{{z_2} = \sqrt 2 \operatorname{cis} \frac{\pi }{6}}&{\text{e}}&{{z_3} = \operatorname{cis} \frac{{5\pi }}{6}}
\end{array}$$ calcule:
- ${z_1}.{z_2}$
- ${z_2}.{z_3}$
- ${z_1}.{z_2}.{z_3}$
Forma trigonométrica do produto:
Se ${z_1} = {\rho _1}\operatorname{cis} {\theta _1}$ e ${z_2} = {\rho _2}\operatorname{cis} {\theta _2}$ são dois complexos não nulos, então $${z_1}.{z_2} = {\rho _1}{\rho _2}\operatorname{cis} \left( {{\theta _1} + {\theta _2}} \right)$$
- Ora,
$$\begin{array}{*{20}{l}}
{{z_1}.{z_2}}& = &{3\operatorname{cis} \left( { – \frac{\pi }{3}} \right) \times \sqrt 2 \operatorname{cis} \frac{\pi }{6}} \\
{}& = &{3\sqrt 2 \operatorname{cis} \left( { – \frac{\pi }{3} + \frac{\pi }{6}} \right)} \\
{}& = &{3\sqrt 2 \operatorname{cis} \left( { – \frac{\pi }{6}} \right)}
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{{z_2}.{z_3}}& = &{\sqrt 2 \operatorname{cis} \frac{\pi }{6} \times \operatorname{cis} \frac{{5\pi }}{6}} \\
{}& = &{\sqrt 2 \operatorname{cis} \left( {\frac{\pi }{6} + \frac{{5\pi }}{6}} \right)} \\
{}& = &{\sqrt 2 \operatorname{cis} \pi }
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{{z_1}.{z_2}.{z_3}}& = &{3\operatorname{cis} \left( { – \frac{\pi }{3}} \right) \times \sqrt 2 \operatorname{cis} \frac{\pi }{6} \times \operatorname{cis} \frac{{5\pi }}{6}} \\
{}& = &{3\sqrt 2 \operatorname{cis} \left( { – \frac{\pi }{3} + \frac{\pi }{6} + \frac{{5\pi }}{6}} \right)} \\
{}& = &{3\sqrt 2 \operatorname{cis} \frac{{2\pi }}{3}}
\end{array}$$