Represente na forma algébrica os números complexos

Números complexos: Infinito 12 A - Parte 3 Pág. 92 Ex. 52

Enunciado

Represente na forma algébrica os números complexos:

  1. $z = 5\operatorname{cis} \pi $
  2. $z = 3\operatorname{cis} \frac{\pi }{2}$
  3. $z = \sqrt 2 \operatorname{cis} \frac{{7\pi }}{4}$
  4. $z = \operatorname{cis} \frac{{7\pi }}{6}$
  5. $z = \sqrt 3 \operatorname{cis} \left( { – \frac{\pi }{3}} \right)$

Resolução

  1. Ora,
    $$\begin{array}{*{20}{l}}
    z& = &{5\operatorname{cis} \pi } \\
    {}& = &{5\left( {\cos \pi  + i\operatorname{sen} \pi } \right)} \\
    {}& = &{5\left( { – 1 + 0i} \right)} \\
    {}& = &{ – 5}
    \end{array}$$
  2. Ora,
    $$\begin{array}{*{20}{l}}
    z& = &{3\operatorname{cis} \frac{\pi }{2}} \\
    {}& = &{3\left( {\cos \frac{\pi }{2} + i\operatorname{sen} \frac{\pi }{2}} \right)} \\
    {}& = &{3\left( {0 + i} \right)} \\
    {}& = &{3i}
    \end{array}$$
  3. Ora,
    $$\begin{array}{*{20}{l}}
    z& = &{\sqrt 2 \operatorname{cis} \frac{{7\pi }}{4}} \\
    {}& = &{\sqrt 2 \left( {\cos \frac{{7\pi }}{4} + i\operatorname{sen} \frac{{7\pi }}{4}} \right)} \\
    {}& = &{\sqrt 2 \left( {\cos \frac{\pi }{4} + i\operatorname{sen} \left( { – \frac{\pi }{4}} \right)} \right)} \\
    {}& = &{\sqrt 2 \left( {\frac{{\sqrt 2 }}{2} – \frac{{\sqrt 2 }}{2}i} \right)} \\
    {}& = &{1 – i}
    \end{array}$$
  4. Ora,
    $$\begin{array}{*{20}{l}}
    z& = &{\operatorname{cis} \frac{{7\pi }}{4}} \\
    {}& = &{\cos \frac{{7\pi }}{6} + i\operatorname{sen} \frac{{7\pi }}{6}} \\
    {}& = &{ – \cos \frac{\pi }{6} – i\operatorname{sen} \frac{\pi }{6}} \\
    {}& = &{ – \frac{{\sqrt 3 }}{2} – \frac{1}{2}i}
    \end{array}$$
  5. Ora,
    $$\begin{array}{*{20}{l}}
    z& = &{\sqrt 3 \operatorname{cis} \left( { – \frac{\pi }{3}} \right)} \\
    {}& = &{\sqrt 3 \left( {\cos \left( { – \frac{\pi }{3}} \right) + i\operatorname{sen} \left( { – \frac{\pi }{3}} \right)} \right)} \\
    {}& = &{\sqrt 3 \left( {\cos \frac{\pi }{3} – i\operatorname{sen} \frac{\pi }{3}} \right)} \\
    {}& = &{\sqrt 3 \left( {\frac{1}{2} – \frac{{\sqrt 3 }}{2}i} \right)} \\
    {}& = &{\frac{{\sqrt 3 }}{2} – \frac{3}{2}i}
    \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.