Outro prisma triangular
Do espaço ao plano: Matematicamente Falando 7 - Parte 2 Pág. 119 Ex. 12
Na figura está representado um prisma triangular.
Calcula:
- a sua área total;
- o seu volume;
- o volume de uma pirâmide com a mesma base e a mesma altura.
A base do prisma é um triângulo retângulo, cujos lados adjacentes ao ângulo reto têm comprimentos 3 cm e 4cm.
Logo, a área de uma das bases é ${{A}_{b}}=\frac{3\times 4}{2}=6\,c{{m}^{2}}$.A superfície lateral é constituída por 3 retângulos, todos eles com comprimento 12 cm, mas com larguras 3, 4 e 5 cm.
Logo, a área lateral do prisma é ${{A}_{L}}=12\times 3+12\times 4+12\times 5=12\times (3+4+5)=144\,c{{m}^{2}}$.Portanto, a área total do prisma é ${{A}_{T}}=2\times {{A}_{b}}+{{A}_{L}}=2\times 6+144=156\,c{{m}^{2}}$.
-
O volume do prisma é $V={{A}_{b}}\times h=6\times 12=72\,c{{m}^{3}}$.
-
O volume dessa pirâmide é $V’=\frac{V}{3}=\frac{1}{3}\times {{A}_{b}}\times h=\frac{6\times 12}{3}=24\,c{{m}^{3}}$.
muchisimas gracias me tomo 30 min resolver este problema pero con la pagina solo me demore 5 minutos es increible muchas gracias