Calcula

Monómios e polinómios: Matematicamente Falando 8 - Pág. 147 Ex. 10

Enunciado

Calcula:

a) \({\left( {x – 1} \right)^2}\)
b) \({\left( {1 – x} \right)^2}\)
c) \({\left( {\frac{{3y}}{2} + 1} \right)^2}\)
d) \({\left( {4x – 3} \right)^2}\)
e) \(\left( {2 – x} \right)\left( {2 + x} \right)\)
f) \(\left( {2xy + \frac{1}{2}} \right)\left( {2xy – \frac{1}{2}} \right)\)
g) \(\left( { – 1 + x} \right)\left( { – 1 – x} \right)\)
h) \(\left( {2x + 1} \right)\left( { – 2x + 1} \right)\)

Resolução

O cálculo está apresentado abaixo:

a) \[{\left( {x – 1} \right)^2} = {x^2} + 2 \times x \times \left( { – 1} \right) + {\left( { – 1} \right)^2} = {x^2} – 2x + 1\]
b) \[{\left( {1 – x} \right)^2} = {1^2} + 2 \times 1 \times \left( { – x} \right) + {\left( { – x} \right)^2} = 1 – 2x + {x^2}\]
c) \[{\left( {\frac{{3y}}{2} + 1} \right)^2} = {\left( {\frac{{3y}}{2}} \right)^2} + 2 \times \frac{{3y}}{2} \times 1 + {1^2} = \frac{9}{4}{y^2} + 3y + 1\]
d) \[{\left( {4x – 3} \right)^2} = {\left( {4x} \right)^2} + 2 \times 4x \times \left( { – 3} \right) + {\left( { – 3} \right)^2} = 16{x^2} – 24x + 9\]
e) \[\left( {2 – x} \right)\left( {2 + x} \right) = {2^2} – {x^2} = 4 – {x^2}\]
f) \[\left( {2xy + \frac{1}{2}} \right)\left( {2xy – \frac{1}{2}} \right) = {\left( {2xy} \right)^2} – {\left( {\frac{1}{2}} \right)^2} = 4{x^2}{y^2} – \frac{1}{4}\]
g) \[\left( { – 1 + x} \right)\left( { – 1 – x} \right) = {\left( { – 1} \right)^2} – {x^2} = 1 – {x^2}\]
h) \[\left( {2x + 1} \right)\left( { – 2x + 1} \right) = – {\left( {2x} \right)^2} + {1^2} = 1 – 4{x^2}\]

 

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.