Faz corresponder a cada expressão o seu valor numérico
Números reais: Matematicamente Falando 8 - Pág. 35 Ex. 9
Faz corresponder a cada expressão o seu valor numérico.
1 | 2 | 3 | 4 | 5 | 6 | 7 |
\[{\frac{{729}}{{64}}}\] | \[{\frac{{223}}{{125}}}\] | \[{ – 1}\] | \[{\frac{{16}}{{625}}}\] | \[{\frac{{29}}{4}}\] | \[{\frac{{3101}}{{25}}}\] | \[1\] |
A | \[{{{\left[ {{{\left( 2 \right)}^3}} \right]}^4} \div {{\left( {\frac{1}{2}} \right)}^{ – 8}} \times {{\left( {\frac{1}{5}} \right)}^4}}\] | B | \[{{{\left( {\frac{1}{2}} \right)}^{ – 3}} + {{\left( {\frac{1}{2}} \right)}^2} – {{\left( {\frac{3}{2}} \right)}^0}}\] |
C | \[{\frac{{{7^3} \times {7^6} \div {7^4}}}{{{{14}^5} \div {2^5}}}}\] | D | \[{{{\left( {\frac{1}{3}} \right)}^{ – 2}} \times {3^4} \div {{\left[ {{{\left( 2 \right)}^2}} \right]}^3}}\] |
Aplicando, sempre que possível, as regras da multiplicação e da divisão de potências, temos:
A | \[\begin{array}{*{20}{l}}{{{\left[ {{{\left( 2 \right)}^3}} \right]}^4} \div {{\left( {\frac{1}{2}} \right)}^{ – 8}} \times {{\left( {\frac{1}{5}} \right)}^4}}& = &{{2^{12}} \div {2^8} \times {{\left( {\frac{1}{5}} \right)}^4}}\\{}& = &{{2^4} \times {{\left( {\frac{1}{5}} \right)}^4}}\\{}& = &{{{\left( {\frac{2}{5}} \right)}^4}}\\{}& = &{\frac{{16}}{{625}}}\end{array}\] | B | \[\begin{array}{*{20}{l}}{{{\left( {\frac{1}{2}} \right)}^{ – 3}} + {{\left( {\frac{1}{2}} \right)}^2} – {{\left( {\frac{3}{2}} \right)}^0}}& = &{{2^3} + \frac{1}{4} – 1}\\{}& = &{8 + \frac{1}{4} – 1}\\{}& = &{\frac{{29}}{4}}\end{array}\] |
C | \[\begin{array}{*{20}{l}}{\frac{{{7^3} \times {7^6} \div {7^4}}}{{{{14}^5} \div {2^5}}}}& = &{\frac{{{7^9} \div {7^4}}}{{{7^5}}}}\\{}& = &{\frac{{{7^5}}}{{{7^5}}}}\\{}& = &1\end{array}\] | D | \[\begin{array}{*{20}{l}}{{{\left( {\frac{1}{3}} \right)}^{ – 2}} \times {3^4} \div {{\left[ {{{\left( 2 \right)}^2}} \right]}^3}}& = &{{3^2} \times {3^4} \div {2^6}}\\{}& = &{{3^6} \div {2^6}}\\{}& = &{{{\left( {\frac{3}{2}} \right)}^6}}\\{}& = &{\frac{{729}}{{64}}}\end{array}\] |
Portanto, A → 4 , B → 5 , C → 7 e D → 1 .