Resolva, em $\mathbb{R}$, as equações

Funções racionais: Aleph 11 - Volume 2 Pág. 48 Ex. 1

Enunciado

Resolva, em $\mathbb{R}$, as equações:

  1. $a – \frac{5}{a} = 4$
  2. $\frac{9}{{x + 5}} = \frac{3}{{x – 3}}$
  3. $\frac{{x + 4}}{x} + \frac{3}{{x + 3}} =  – \frac{{16}}{{{x^2} – 4x}}$

Resolução

  1. Tem-se sucessivamente:
    \[\begin{array}{*{20}{l}}
    {\mathop a\limits_{\left( a \right)}  – \frac{5}{a} = \mathop 4\limits_{\left( a \right)} }& \Leftrightarrow &{\frac{{{a^2} – 5 – 4a}}{a} = 0} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {{a^2} – 4a – 5 = 0}& \wedge &{a \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {a = \frac{{4 \pm \sqrt {16 + 20} }}{2}}& \wedge &{a \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {\left( {\begin{array}{*{20}{c}}
    {a =  – 1}& \vee &{a = 5}
    \end{array}} \right)}& \wedge &{a \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {a =  – 1}& \vee &{a = 5}
    \end{array}}
    \end{array}\]
  2. Tem-se sucessivamente:
    \[\begin{array}{*{20}{l}}
    {\frac{9}{{\mathop {x + 5}\limits_{\left( {x – 3} \right)} }} = \frac{3}{{\mathop {x – 3}\limits_{\left( {x + 5} \right)} }}}& \Leftrightarrow &{\frac{{9x – 27 – 3x – 15}}{{\left( {x + 5} \right)\left( {x – 3} \right)}} = 0} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {6x – 42 = 0}& \wedge &{\left( {x + 5} \right)\left( {x – 3} \right) \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {x = 7}& \wedge &{\left( {\begin{array}{*{20}{c}}
    {x \ne  – 5}& \wedge &{x \ne 3}
    \end{array}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{x = 7}
    \end{array}\]
  3. Tem-se sucessivamente:
    \[\begin{array}{*{20}{l}}
    {\frac{{x + 4}}{{\mathop x\limits_{\left( {\left( {x + 3} \right)\left( {x – 4} \right)} \right)} }} + \frac{3}{{\mathop {x + 3}\limits_{\left( {x\left( {x – 4} \right)} \right)} }} =  – \frac{{16}}{{\mathop {{x^2} – 4x}\limits_{\left( {x + 3} \right)} }}}& \Leftrightarrow &{\frac{{\left( {x + 3} \right)\left( {x – 4} \right)\left( {x + 4} \right) + 3x\left( {x – 4} \right) + 16\left( {x + 3} \right)}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\frac{{\left( {x + 3} \right)\left( {{x^2} – 16} \right) + 3x\left( {x – 4} \right) + 16\left( {x + 3} \right)}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\frac{{\left( {x + 3} \right){x^2} – 16\left( {x + 3} \right) + 3x\left( {x – 4} \right) + 16\left( {x + 3} \right)}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\frac{{\left( {x + 3} \right){x^2} + 3x\left( {x – 4} \right)}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\frac{{x\left[ {x\left( {x + 3} \right) + 3\left( {x – 4} \right)} \right]}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\frac{{x\left( {{x^2} + 6x – 12} \right)}}{{x\left( {x + 3} \right)\left( {x – 4} \right)}} = 0} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {x\left( {{x^2} + 6x – 12} \right) = 0}& \wedge &{x\left( {x + 3} \right)\left( {x – 4} \right) \ne 0}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {\left( {\begin{array}{*{20}{c}}
    {x = 0}& \vee &{{x^2} + 6x – 12 = 0}
    \end{array}} \right)}& \wedge &{\left( {\begin{array}{*{20}{l}}
    {x \ne 0}& \wedge &{x \ne  – 3}& \wedge &{x \ne 4}
    \end{array}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {\left( {\begin{array}{*{20}{c}}
    {x = 0}& \vee &{x = \frac{{ – 6 \pm \sqrt {36 + 48} }}{2}}
    \end{array}} \right)}& \wedge &{\left( {\begin{array}{*{20}{l}}
    {x \ne 0}& \wedge &{x \ne  – 3}& \wedge &{x \ne 4}
    \end{array}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{c}}
    {\left( {\begin{array}{*{20}{l}}
    {x = 0}& \vee &{x =  – 3 – \sqrt {21} }& \vee &{x = }
    \end{array} – 3 + \sqrt {21} } \right)}& \wedge &{\left( {\begin{array}{*{20}{l}}
    {x \ne 0}& \wedge &{x \ne  – 3}& \wedge &{x \ne 4}
    \end{array}} \right)}
    \end{array}} \\
    {}& \Leftrightarrow &{\begin{array}{*{20}{l}}
    {x =  – 3 – \sqrt {21} }& \vee &{x =  – 3 + \sqrt {21} }
    \end{array}}
    \end{array}\]

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.