Reduz a uma só potência

Números inteiros: Matematicamente Falando 7 - Pág. 33 Ex. 5

Enunciado

Reduz a uma só potência:

  1.  ${\left( { – 2} \right)^2} \times {\left( { – 2} \right)^4}$
  2. ${\left( { – 7} \right)^5} \div {7^2}$
  3. ${3^2} \times {\left( {{3^3}} \right)^2}$
  4. ${21^3} \times {21^2} \times {21^3}$
  5. ${\left( { – 3} \right)^3} \div {\left( { – 3} \right)^2}$
  6. $\frac{{{7^2}}}{7}$
  7. ${\left( { – 3} \right)^4} \times {\left( { – 3} \right)^3} \div {\left( { – 3} \right)^2}$
  8. ${7^4} \times {7^3}$
  9. ${\left( { – 3} \right)^3} \times {\left( { – 3} \right)^4} \div \left( { – 3} \right)$
  10. $\frac{{{2^6} \times {{\left( {{2^4}} \right)}^5}}}{{{2^{24}}}}$

Resolução

  1. Ora,
    $$\begin{array}{*{20}{l}}   {{{\left( { – 2} \right)}^2} \times {{\left( { – 2} \right)}^4}}& = &{{{\left( { – 2} \right)}^6}} \end{array}$$
  2. Ora,
    $$\begin{array}{*{20}{l}}   {{{\left( { – 7} \right)}^5} \div {7^2}}& = &{{{\left( { – 7} \right)}^5} \div {{\left( { – 7} \right)}^2}} \\   {}& = &{{{\left( { – 7} \right)}^3}} \end{array}$$
  3. Ora,
    $$\begin{array}{*{20}{l}}   {{3^2} \times {{\left( {{3^3}} \right)}^2}}& = &{{3^2} \times {3^6}} \\   {}& = &{{3^8}} \end{array}$$
  4. Ora,
    $$\begin{array}{*{20}{l}}   {{{21}^3} \times {{21}^2} \times {{21}^3}}& = &{{{21}^5} \times {{21}^3}} \\   {}& = &{{{21}^8}} \end{array}$$
  5. Ora,
    $$\begin{array}{*{20}{l}}   {{{\left( { – 3} \right)}^3} \div {{\left( { – 3} \right)}^2}}& = &{{{\left( { – 3} \right)}^1}} \end{array}$$
  6. Ora,
    $$\begin{array}{*{20}{l}}   {\frac{{{7^2}}}{7}}& = &{\frac{{{7^2}}}{{{7^1}}}} \\   {}& = &{{7^1}} \end{array}$$
  7. Ora,
    $$\begin{array}{*{20}{l}}   {{{\left( { – 3} \right)}^4} \times {{\left( { – 3} \right)}^3} \div {{\left( { – 3} \right)}^2}}& = &{{{\left( { – 3} \right)}^7} \div {{\left( { – 3} \right)}^2}} \\   {}& = &{{{\left( { – 3} \right)}^5}} \end{array}$$
  8. Ora,
    $$\begin{array}{*{20}{l}}   {{7^4} \times {7^3}}& = &{{7^7}} \end{array}$$
  9. Ora,
    $$\begin{array}{*{20}{l}}   {{{\left( { – 3} \right)}^3} \times {{\left( { – 3} \right)}^4} \div \left( { – 3} \right)}& = &{{{\left( { – 3} \right)}^7} \div {{\left( { – 3} \right)}^1}} \\   {}& = &{{{\left( { – 3} \right)}^6}} \end{array}$$
  10. Ora,
    $$\begin{array}{*{20}{l}}   {\frac{{{2^6} \times {{\left( {{2^4}} \right)}^5}}}{{{2^{24}}}}}& = &{\frac{{{2^6} \times {2^{20}}}}{{{2^{24}}}}} \\   {}& = &{\frac{{{2^{26}}}}{{{2^{24}}}}} \\   {}& = &{{2^2}} \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.