Qual é a resposta correta?
Números complexos: Infinito 12 A - Parte 3 Pág. 142 Ex. 51
Em cada uma das alíneas seguintes, uma ou várias respostas estão corretas. Indique quais.
Seja $z = {\cos ^2}\theta + \frac{i}{2}\operatorname{sen} \left( {2\theta } \right)$ e $\theta \in \left] { – \pi ,\pi } \right[$.
Exercício 1
O módulo de $z$ é:
[A] $\cos \theta $, qualquer que seja $\theta $;
[B] $\cos \theta $, se $\theta \in \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$;
[C] $\cos \left( {\theta + \pi } \right)$, se $\theta \notin \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$.
Exercício 2
Um argumento de $z$ é:
[A] $\theta $, qualquer que seja $\theta $;
[B] $2\theta $:
[C] $\theta + \pi $, se $\theta \notin \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$.
Exercício 3
${z^2}$ é igual a:
[A] ${\cos ^4}\theta – \frac{1}{4}{\operatorname{sen} ^2}2\theta + i\operatorname{sen} 2\theta {\cos ^2}\theta $;
[B] ${\cos ^2}\theta \operatorname{cis} \left( {2\theta } \right)$;
[C] ${\cos ^2}\left( {\theta + \pi } \right)\operatorname{cis} \left[ {2\left( {\theta + \pi } \right)} \right]$.
Seja $z = {\cos ^2}\theta + \frac{i}{2}\operatorname{sen} \left( {2\theta } \right)$ e $\theta \in \left] { – \pi ,\pi } \right[$.
Exercício 1
O módulo de $z$ é:
[A] $\cos \theta $, qualquer que seja $\theta $;
[B] $\cos \theta $, se $\theta \in \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$;
[C] $\cos \left( {\theta + \pi } \right)$, se $\theta \notin \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$.
Ora, $$\begin{array}{*{20}{l}}
{\left| {\text{z}} \right|}& = &{\sqrt {{{\left( {{{\cos }^2}\theta } \right)}^2} + {{\left( {\frac{1}{2}\operatorname{sen} \left( {2\theta } \right)} \right)}^2}} } \\
{}& = &{\sqrt {{{\cos }^4}\theta + \frac{1}{4}{{\operatorname{sen} }^2}\left( {2\theta } \right)} } \\
{}& = &{\sqrt {{{\cos }^4}\theta + \frac{1}{4}{{\left( {\operatorname{sen} \left( {2\theta } \right)} \right)}^2}} } \\
{}& = &{\sqrt {{{\cos }^4}\theta + \frac{1}{4}{{\left( {2\operatorname{sen} \theta \cos \theta } \right)}^2}} } \\
{}& = &{\sqrt {{{\cos }^4}\theta + \frac{1}{4} \times 4{{\operatorname{sen} }^2}\theta \times {{\cos }^2}\theta } } \\
{}& = &{\sqrt {{{\cos }^2}\theta \left( {{{\cos }^2}\theta + {{\operatorname{sen} }^2}\theta } \right)} } \\
{}& = &{\sqrt {{{\cos }^2}\theta } } \\
{}& = &{\left| {\cos \theta } \right|} \\
{}& = &{\left\{ {\begin{array}{*{20}{l}}
{\cos \theta }& \Leftarrow &{\theta \in \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]} \\
{\cos \left( {\pi + \theta } \right)}& \Leftarrow &{\theta \in \left( {\left] { – \pi ,\pi } \right[\backslash \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]} \right)}
\end{array}} \right.}
\end{array}$$Logo, são corretas as respostas B e C.
Exercício 2
Um argumento de $z$ é:
[A] $\theta $, qualquer que seja $\theta $;
[B] $2\theta $:
[C] $\theta + \pi $, se $\theta \notin \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]$.
Ora, $$\begin{array}{*{20}{l}}
z& = &{{{\cos }^2}\theta + \frac{i}{2}\operatorname{sen} \left( {2\theta } \right)} \\
{}& = &{{{\cos }^2}\theta + \frac{i}{2} \times 2\operatorname{sen} \theta \cos \theta } \\
{}& = &{\cos \theta \left( {\cos \theta + i\operatorname{sen} \theta } \right)}
\end{array}$$Como ${\cos ^2}\theta \geqslant 0,\forall \left] { – \pi ,\pi } \right[$, então $\arg z \in \left[ { – \frac{\pi }{2} + 2k\pi ,\frac{\pi }{2} + 2k\pi } \right],k \in \mathbb{Z}$
Assim:
- um argumento de $z$ é $\theta $ se ${\theta \in \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]}$.
- um argumento de $z$ é $\theta + \pi $ se ${\theta \in \left( {\left] { – \pi ,\pi } \right[\backslash \left[ { – \frac{\pi }{2},\frac{\pi }{2}} \right]} \right)}$
Logo, apenas a resposta C é correta.
Exercício 3
${z^2}$ é igual a:
[A] ${\cos ^4}\theta – \frac{1}{4}{\operatorname{sen} ^2}2\theta + i\operatorname{sen} 2\theta {\cos ^2}\theta $;
[B] ${\cos ^2}\theta \operatorname{cis} \left( {2\theta } \right)$;
[C] ${\cos ^2}\left( {\theta + \pi } \right)\operatorname{cis} \left[ {2\left( {\theta + \pi } \right)} \right]$.
$$\begin{array}{*{20}{l}}
{{z^2}}& = &{{{\left( {{{\cos }^2}\theta + \frac{i}{2}\operatorname{sen} \left( {2\theta } \right)} \right)}^2}}&{}&{} \\
{}& = &{{{\cos }^4}\theta – \frac{1}{4}{{\operatorname{sen} }^2}\left( {2\theta } \right) + i\operatorname{sen} \left( {2\theta } \right){{\cos }^2}\theta }&{}&{{\text{[A]}}} \\
{}& = &{{{\cos }^4}\theta – \frac{1}{4}{{\left( {2\operatorname{sen} \theta \cos \theta } \right)}^{\text{2}}} + i\operatorname{sen} \left( {2\theta } \right){{\cos }^2}\theta }&{}&{} \\
{}& = &{{{\cos }^2}\theta \left( {{{\cos }^2}\theta – {{\operatorname{sen} }^2}\theta } \right) + i\operatorname{sen} \left( {2\theta } \right){{\cos }^2}\theta }&{}&{} \\
{}& = &{{{\cos }^2}\theta \cos \left( {2\theta } \right) + i\operatorname{sen} \left( {2\theta } \right){{\cos }^2}\theta }&{}&{} \\
{}& = &{{{\cos }^2}\theta \left( {\cos \left( {2\theta } \right) + i\operatorname{sen} \left( {2\theta } \right)} \right)}&{}&{} \\
{}& = &{{{\cos }^2}\theta \operatorname{cis} \left( {2\theta } \right)}&{}&{{\text{[B]}}} \\
{}& = &{{{\cos }^2}\left( {\theta + \pi } \right)\operatorname{cis} \left( {2\theta + 2\pi } \right)}&{}&{} \\
{}& = &{{{\cos }^2}\left( {\theta + \pi } \right)\operatorname{cis} \left( {2\left( {\theta + \pi } \right)} \right)}&{}&{{\text{[C]}}}
\end{array}$$Logo, todas as respostas são corretas.