Calcule
Números complexos: Infinito 12 A - Parte 3 Pág. 141 Ex. 50
Sendo $$\begin{array}{*{20}{c}}
{{z_1} = 16\operatorname{cis} \frac{\pi }{4}}&{\text{e}}&{{z_2} = 16\operatorname{cis} \frac{{3\pi }}{4}}
\end{array}$$ calcule:
- ${z_1} + {z_2}$
- ${z_1} – {z_2}$
- ${\left( {\frac{{{z_1} + {z_2}}}{{{z_1} – {z_2}}}} \right)^3}$
- Ora,
$$\begin{array}{*{20}{l}}
{{z_1} + {z_2}}& = &{16\operatorname{cis} \frac{\pi }{4} + 16\operatorname{cis} \frac{{3\pi }}{4}} \\
{}& = &{16\left( {\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i} \right) + 16\left( { – \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i} \right)} \\
{}& = &{16\sqrt 2 i}
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{{z_1} – {z_2}}& = &{16\operatorname{cis} \frac{\pi }{4} – 16\operatorname{cis} \frac{{3\pi }}{4}} \\
{}& = &{16\left( {\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i} \right) – 16\left( { – \frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2}i} \right)} \\
{}& = &{16\sqrt 2 }
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{{{\left( {\frac{{{z_1} + {z_2}}}{{{z_1} – {z_2}}}} \right)}^3}}& = &{{{\left( {\frac{{16\sqrt 2 i}}{{16\sqrt 2 }}} \right)}^3}} \\
{}& = &{{i^3}} \\
{}& = &{ – i}
\end{array}$$
Nota: NÃO existem regras operatórias relativas à adição e subtração de números complexos na forma trigonométrica!