Determina e indica o grau de cada polinómio obtido

Equações de grau superior ao 1.º: Matematicamente Falando 8 - Parte 2 Pág. 65 Ex. 11

Enunciado

Considera os polinómios:

$A=7{{x}^{2}}-2x+\frac{1}{2}$ $B={{x}^{2}}-4x$ $C=3{{x}^{2}}-4x+\frac{7}{3}$ $D=3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3}$

Determina e indica o grau de cada polinómio obtido:

  1. $A+B$
  2. $B-C$
  3. $C-D$
  4. $A-(B+C+D)$

Resolução

$A=7{{x}^{2}}-2x+\frac{1}{2}$ $B={{x}^{2}}-4x$ $C=3{{x}^{2}}-4x+\frac{7}{3}$ $D=3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3}$
  1. Ora,
    \[\begin{array}{*{35}{l}}
    A+B & = & (7{{x}^{2}}-2x+\frac{1}{2})+({{x}^{2}}-4x)  \\
    {} & = & 7{{x}^{2}}+{{x}^{2}}-2x-4x+\frac{1}{2}  \\
    {} & = & 8{{x}^{2}}-6x+\frac{1}{2}  \\
    \end{array}\]
    O polinómio obtido é de grau 2.
    ­
  2. Ora,
    \[\begin{array}{*{35}{l}}
    B-C & = & ({{x}^{2}}-4x)-(3{{x}^{2}}-4x+\frac{7}{3})  \\
    {} & = & {{x}^{2}}-4x-3{{x}^{2}}+4x-\frac{7}{3}  \\
    {} & = & {{x}^{2}}-3{{x}^{2}}-4x+4x-\frac{7}{3}  \\
    {} & = & -2{{x}^{2}}-\frac{7}{3}  \\
    \end{array}\]
    O polinómio obtido é de grau 2.
    ­
  3. Ora,
    \[\begin{array}{*{35}{l}}
    C-D & = & (3{{x}^{2}}-4x+\frac{7}{3})-(3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3})  \\
    {} & = & 3{{x}^{2}}-4x+\frac{7}{3}-3{{x}^{2}}-\frac{1}{2}x+\frac{2}{3}  \\
    {} & = & 3{{x}^{2}}-3{{x}^{2}}-\underset{(2)}{\mathop{4x}}\,-\frac{1}{\underset{(1)}{\mathop{2}}\,}x+\frac{7}{3}+\frac{2}{3}  \\
    {} & = & -\frac{8}{2}x-\frac{1}{2}x+\frac{9}{3}  \\
    {} & = & -\frac{9}{2}x+3  \\
    \end{array}\]
    O polinómio obtido é de grau 1.
    ­
  4. Ora,
    \[\begin{array}{*{35}{l}}
    A-(B+C+D) & = & (7{{x}^{2}}-2x+\frac{1}{2})-\left[ ({{x}^{2}}-4x)+(3{{x}^{2}}-4x+\frac{7}{3})+(3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3}) \right]  \\
    {} & = & (7{{x}^{2}}-2x+\frac{1}{2})-({{x}^{2}}-4x+3{{x}^{2}}-4x+\frac{7}{3}+3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3})  \\
    {} & = & (7{{x}^{2}}-2x+\frac{1}{2})-({{x}^{2}}+3{{x}^{2}}+3{{x}^{2}}-\underset{(2)}{\mathop{4x}}\,-\underset{(2)}{\mathop{4x}}\,+\frac{1}{\underset{(1)}{\mathop{2}}\,}x+\frac{7}{3}-\frac{2}{3})  \\
    {} & = & (7{{x}^{2}}-2x+\frac{1}{2})-(7{{x}^{2}}-\frac{15}{2}x+\frac{5}{3})  \\
    {} & = & 7{{x}^{2}}-2x+\frac{1}{2}-7{{x}^{2}}+\frac{15}{2}x-\frac{5}{3}  \\
    {} & = & 7{{x}^{2}}-7{{x}^{2}}-\underset{(2)}{\mathop{2x}}\,+\frac{15}{\underset{(1)}{\mathop{2}}\,}x+\frac{1}{\underset{(3)}{\mathop{2}}\,}-\frac{5}{\underset{(2)}{\mathop{3}}\,}  \\
    {} & = & \frac{11}{2}x-\frac{7}{6}  \\
    \end{array}\]
    Alternativa:
    Para evitar reduzir os termos semelhantes por duas vezes, será preferível começar por desembaraçar os parêntesis:
    \[\begin{array}{*{35}{l}}
    A-(B+C+D) & = & (7{{x}^{2}}-2x+\frac{1}{2})-\left[ ({{x}^{2}}-4x)+(3{{x}^{2}}-4x+\frac{7}{3})+(3{{x}^{2}}+\frac{1}{2}x-\frac{2}{3}) \right]  \\
    {} & = & 7{{x}^{2}}-2x+\frac{1}{2}-{{x}^{2}}+4x-3{{x}^{2}}+4x-\frac{7}{3}-3{{x}^{2}}-\frac{1}{2}x+\frac{2}{3}  \\
    {} & = & 7{{x}^{2}}-{{x}^{2}}-3{{x}^{2}}-3{{x}^{2}}-2x+4x+4x-\frac{1}{2}x+\frac{1}{2}-\frac{7}{3}+\frac{2}{3}  \\
    {} & = & \underset{(2)}{\mathop{6x}}\,-\frac{1}{\underset{(1)}{\mathop{2}}\,}x+\frac{1}{\underset{(3)}{\mathop{2}}\,}-\frac{5}{\underset{(2)}{\mathop{3}}\,}  \\
    {} & = & \frac{11}{2}x-\frac{7}{6}  \\
    \end{array}\]
    O polinómio obtido é de grau 1.

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.