Tagged: assíntotas

0

Considera a função $g\left( x \right) = \frac{1}{x}$

Funções racionais: Aleph 11 - Volume 2 Pág. 52 Ex. 10

Enunciado

Considera a função $g\left( x \right) = \frac{1}{x}$, de domínio $\mathbb{R}\backslash \left\{ 0 \right\}$.

  1. Que transformações geométricas se devem efetuar a partir do gráfico de $g$ para se obter o gráfico da função \[f\left( x \right) = \frac{{x – 1}}{{2x – 3}}\] de domínio $\mathbb{R}\backslash \left\{ {\frac{3}{2}} \right\}$, representada graficamente ao lado.
  2. Quais as assíntotas do gráfico da função $f$?
  3. Determina o contradomínio de $f$.

Resolução >> Resolução

<< EnunciadoLer mais
0

Determine as assíntotas do gráfico das seguintes funções

Funções racionais: Aleph 11 - Volume 2 Pág. 51 Ex. 8

Enunciado

Determine as assíntotas do gráfico de cada uma das seguintes funções:

\[\begin{array}{*{20}{c}}
{f\left( x \right) = \frac{{2x – 1}}{{x + 3}}}&{\text{e}}&{g\left( x \right) = \frac{{2{x^2} – 7x + 3}}{{x – 3}}}
\end{array}\]

Resolução >> Resolução

<< EnunciadoLer mais
0

Considere a função $h$

Funções racionais: Aleph 11 - Volume 2 Pág. 50 Ex. 5

Enunciado

Considere a função $h$, definida por: \[h\left( x \right) = \frac{{2{x^2} + x – 1}}{{x – 3}}\]

  1. Escreva $h\left( x \right)$ na forma \[a + bx + \frac{c}{{x – 3}}\]
  2. A partir da decomposição obtida na alínea anterior, determine:
    \[\mathop {\lim }\limits_{x \to  + \infty } h\left( x \right)\] \[\mathop {\lim }\limits_{x \to  – \infty } h\left( x \right)\] \[\mathop {\lim }\limits_{x \to 3} h\left( x \right)\]
  3. Tendo em consideração os resultados obtidos anteriormente, esboce o gráfico
Ler mais