Calcule
Números complexos: Infinito 12 A - Parte 3 Pág. 97 Ex. 59
Calcule:
- $$\frac{{2\operatorname{cis} \frac{\pi }{3}}}{{4\operatorname{cis} \left( {\frac{{2\pi }}{3}} \right)}}$$
- $$\frac{{ – 2}}{{\operatorname{cis} \left( { – \theta } \right)}}$$
- $$\frac{{ – \operatorname{cis} \frac{\pi }{6}}}{{2\operatorname{cis} \theta }}$$
- $$\left( {2\operatorname{cis} \frac{{5\pi }}{6}} \right) \times \left[ {3\operatorname{cis} \left( { – \frac{{2\pi }}{3}} \right)} \right]$$
Forma trigonométrica do quociente:
Se ${z_1} = {\rho _1}\operatorname{cis} \left( {{\theta _1}} \right)$ e ${z_2} = {\rho _2}\operatorname{cis} \left( {{\theta _2}} \right)$ são dois números complexos não nulos, então $$\frac{{{z_1}}}{{{z_2}}} = \frac{{{\rho _1}}}{{{\rho _2}}}\operatorname{cis} \left( {{\theta _1} – {\theta _2}} \right)$$
- Ora,
$$\begin{array}{*{20}{l}}
{\frac{{2\operatorname{cis} \frac{\pi }{3}}}{{4\operatorname{cis} \left( {\frac{{2\pi }}{3}} \right)}}}& = &{\frac{2}{4}\operatorname{cis} \left( {\frac{\pi }{3} – \frac{{2\pi }}{3}} \right)} \\
{}& = &{\frac{1}{2}\operatorname{cis} \left( { – \frac{\pi }{3}} \right)} \\
{}& = &{\frac{1}{2}\operatorname{cis} \frac{{5\pi }}{3}}
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{\frac{{ – 2}}{{\operatorname{cis} \left( { – \theta } \right)}}}& = &{\frac{{2\operatorname{cis} \pi }}{{\operatorname{cis} \left( { – \theta } \right)}}} \\
{}& = &{\frac{2}{1}\operatorname{cis} \left( {\pi + \theta } \right)} \\
{}& = &{2\operatorname{cis} \left( {\pi + \theta } \right)}
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{\frac{{ – \operatorname{cis} \frac{\pi }{6}}}{{2\operatorname{cis} \theta }}}& = &{\frac{{\operatorname{cis} \left( {\pi + \frac{\pi }{6}} \right)}}{{2\operatorname{cis} \theta }}} \\
{}& = &{\frac{1}{2}\operatorname{cis} \left( {\pi + \frac{\pi }{6} – \theta } \right)} \\
{}& = &{\frac{1}{2}\operatorname{cis} \left( {\frac{{7\pi }}{6} – \theta } \right)}
\end{array}$$ - Ora,
$$\begin{array}{*{20}{l}}
{\left( {2\operatorname{cis} \frac{{5\pi }}{6}} \right) \times \left[ {3\operatorname{cis} \left( { – \frac{{2\pi }}{3}} \right)} \right]}& = &{\left( {2 \times 3} \right)\operatorname{cis} \left( {\frac{{5\pi }}{6} + \left( { – \frac{{2\pi }}{3}} \right)} \right)} \\
{}& = &{6\operatorname{cis} \frac{\pi }{6}}
\end{array}$$