Calcule

Números complexos: Infinito 12 A - Parte 3 Pág. 97 Ex. 59

Enunciado

Calcule:

  1. $$\frac{{2\operatorname{cis} \frac{\pi }{3}}}{{4\operatorname{cis} \left( {\frac{{2\pi }}{3}} \right)}}$$
  2. $$\frac{{ – 2}}{{\operatorname{cis} \left( { – \theta } \right)}}$$
  3. $$\frac{{ – \operatorname{cis} \frac{\pi }{6}}}{{2\operatorname{cis} \theta }}$$
  4. $$\left( {2\operatorname{cis} \frac{{5\pi }}{6}} \right) \times \left[ {3\operatorname{cis} \left( { – \frac{{2\pi }}{3}} \right)} \right]$$

Resolução

Forma trigonométrica do quociente:

Se ${z_1} = {\rho _1}\operatorname{cis} \left( {{\theta _1}} \right)$ e ${z_2} = {\rho _2}\operatorname{cis} \left( {{\theta _2}} \right)$ são dois números complexos não nulos, então $$\frac{{{z_1}}}{{{z_2}}} = \frac{{{\rho _1}}}{{{\rho _2}}}\operatorname{cis} \left( {{\theta _1} – {\theta _2}} \right)$$

  1. Ora,
    $$\begin{array}{*{20}{l}}
    {\frac{{2\operatorname{cis} \frac{\pi }{3}}}{{4\operatorname{cis} \left( {\frac{{2\pi }}{3}} \right)}}}& = &{\frac{2}{4}\operatorname{cis} \left( {\frac{\pi }{3} – \frac{{2\pi }}{3}} \right)} \\
    {}& = &{\frac{1}{2}\operatorname{cis} \left( { – \frac{\pi }{3}} \right)} \\
    {}& = &{\frac{1}{2}\operatorname{cis} \frac{{5\pi }}{3}}
    \end{array}$$
  2. Ora,
    $$\begin{array}{*{20}{l}}
    {\frac{{ – 2}}{{\operatorname{cis} \left( { – \theta } \right)}}}& = &{\frac{{2\operatorname{cis} \pi }}{{\operatorname{cis} \left( { – \theta } \right)}}} \\
    {}& = &{\frac{2}{1}\operatorname{cis} \left( {\pi  + \theta } \right)} \\
    {}& = &{2\operatorname{cis} \left( {\pi  + \theta } \right)}
    \end{array}$$
  3. Ora,
    $$\begin{array}{*{20}{l}}
    {\frac{{ – \operatorname{cis} \frac{\pi }{6}}}{{2\operatorname{cis} \theta }}}& = &{\frac{{\operatorname{cis} \left( {\pi  + \frac{\pi }{6}} \right)}}{{2\operatorname{cis} \theta }}} \\
    {}& = &{\frac{1}{2}\operatorname{cis} \left( {\pi  + \frac{\pi }{6} – \theta } \right)} \\
    {}& = &{\frac{1}{2}\operatorname{cis} \left( {\frac{{7\pi }}{6} – \theta } \right)}
    \end{array}$$
  4. Ora,
    $$\begin{array}{*{20}{l}}
    {\left( {2\operatorname{cis} \frac{{5\pi }}{6}} \right) \times \left[ {3\operatorname{cis} \left( { – \frac{{2\pi }}{3}} \right)} \right]}& = &{\left( {2 \times 3} \right)\operatorname{cis} \left( {\frac{{5\pi }}{6} + \left( { – \frac{{2\pi }}{3}} \right)} \right)} \\
    {}& = &{6\operatorname{cis} \frac{\pi }{6}}
    \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.