A Casinha da Matemática Blog

0

Determine o menor valor inteiro positivo $k$ para o qual ${\left( {\sqrt 3 – i} \right)^k}$ representa um número real positivo

Números complexos: Infinito 12 A - Parte 3 Pág. 143 Ex. 59

Enunciado

Determine o menor valor inteiro positivo $k$ para o qual ${\left( {\sqrt 3  – i} \right)^k}$ representa um número real positivo.

Resolução >> Resolução

<< EnunciadoLer mais
0

Radiciação em $\mathbb{C}$

Exploração da representação geométrica das n raízes de índice n de um número complexo não nulo

Sendo $z = \rho \operatorname{cis} \theta $ um número complexo não nulo, as $n$ raízes de índice $n$ são: $${w_k} = \sqrt[n]{\rho }\operatorname{cis} \left( {\frac{\theta }{n} + \frac{{2k\pi }}{n}} \right)\,\,,k = 0,1,2,…,n – 1$$

0

Considere os seguintes números complexos

Números complexos: Infinito 12 A - Parte 3 Pág. 142 Ex. 53

Enunciado

Considere $$\begin{array}{*{20}{c}}
{{z_1} = \frac{{\sqrt 3 }}{2} – \frac{1}{2}i}&{\text{e}}&{{z_2} = \operatorname{cis} \frac{{3\pi }}{4}}
\end{array}$$

  1. Determine ${z_1}.{z_2}$, na forma trigonométrica e na forma algébrica.
  2. Utilizando os resultados obtidos na alínea anterior, deduza os valores exatos de $\cos \frac{{7\pi }}{{12}}$ e $\operatorname{sen} \frac{{7\pi }}{{12}}$.
  3. Obtenha os valores de $\cos \frac{{7\pi }}{{12}}$ e $\operatorname{sen} \frac{{7\pi }}{{12}}$ utilizando outro processo.
    (Sugestão: $\frac{{7\pi }}{{12}} = \frac{\pi }{4} + \frac{\pi }{3}$)

Resolução >> Resolução

<< EnunciadoLer mais