Determine na forma trigonométrica

Números complexos: Infinito 12 A - Parte 3 Pág. 140 Ex. 46

Enunciado

Sendo $$\begin{array}{*{20}{c}}
{z = 2\operatorname{cis} \frac{\pi }{3}}&{\text{e}}&{w = 3\operatorname{cis} \frac{\pi }{2}}
\end{array}$$ determine na forma trigonométrica:

  1. $zw$
  2. $\frac{z}{w}$
  3. ${z^3}$

Resolução

$$\begin{array}{*{20}{c}}
{z = 2\operatorname{cis} \frac{\pi }{3}}&{\text{e}}&{w = 3\operatorname{cis} \frac{\pi }{2}}
\end{array}$$

  1. Ora,
    $$\begin{array}{*{20}{l}}
    {zw}& = &{\left( {2\operatorname{cis} \frac{\pi }{3}} \right) \times \left( {3\operatorname{cis} \frac{\pi }{2}} \right)} \\
    {}& = &{\left( {2 \times 3} \right)\operatorname{cis} \left( {\frac{\pi }{3} + \frac{\pi }{2}} \right)} \\
    {}& = &{6\operatorname{cis} \frac{{5\pi }}{6}}
    \end{array}$$
  2. Ora,
    $$\begin{array}{*{20}{l}}
    {\frac{z}{w}}& = &{\frac{{2\operatorname{cis} \frac{\pi }{3}}}{{3\operatorname{cis} \frac{\pi }{2}}}} \\
    {}& = &{\frac{2}{3}\operatorname{cis} \left( {\frac{\pi }{3} – \frac{\pi }{2}} \right)} \\
    {}& = &{\frac{2}{3}\operatorname{cis} \left( { – \frac{\pi }{6}} \right)}
    \end{array}$$
  3. Ora,
    $$\begin{array}{*{20}{l}}
    {{z^3}}& = &{{{\left( {2\operatorname{cis} \frac{\pi }{3}} \right)}^3}} \\
    {}& = &{{2^3}\operatorname{cis} \left( {3 \times \frac{\pi }{3}} \right)} \\
    {}& = &{8\operatorname{cis} \pi }
    \end{array}$$

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.