Calcule o valor exato

Trigonometria: Infinito 11 A - Parte 1 Pág. 96 Ex. 54

Enunciado

Calcule o valor exato de cada uma das expressões.

  1. $sen\,\frac{13\pi }{3}+\cos 5\pi -tg\,(-7\pi )+\cos (-\frac{23\pi }{4})$
  2. $se{{n}^{2}}\,(-\frac{7\pi }{4})+{{\cos }^{2}}(-\frac{7\pi }{4})$
  3. $sen\,\frac{19\pi }{3}+\cos (-3\pi )-tg\,(-\frac{15\pi }{4})+\cos (-\frac{11\pi }{6})$
  4. $tg\,\frac{13\pi }{4}+\cos 6\pi -sen\,(-\frac{7\pi }{2})+\cos (-\frac{17\pi }{3})$

Resolução

  1. Ora,
    \[\begin{array}{*{35}{l}}
    sen\,\frac{13\pi }{3}+\cos 5\pi -tg\,(-7\pi )+\cos (-\frac{23\pi }{4}) & = & sen\,(4\pi +\frac{\pi }{3})+\cos (4\pi +\pi )-tg\,(-7\pi +0)+\cos (-6\pi +\frac{\pi }{4})  \\
    {} & = & sen\,\frac{\pi }{3}+\cos \pi -tg\,0+\cos \frac{\pi }{4}  \\
    {} & = & \frac{\sqrt{3}}{2}-1-0+\frac{\sqrt{2}}{2}  \\
    {} & = & \frac{\sqrt{3}+\sqrt{2}-2}{2}  \\
    \end{array}\]
  2. Ora,
    \[\begin{array}{*{35}{l}}
    se{{n}^{2}}\,(-\frac{7\pi }{4})+{{\cos }^{2}}(-\frac{7\pi }{4}) & = & se{{n}^{2}}\,(-2\pi +\frac{\pi }{4})+{{\cos }^{2}}(-2\pi +\frac{\pi }{4})  \\
    {} & = & se{{n}^{2}}\,(\frac{\pi }{4})+{{\cos }^{2}}(\frac{\pi }{4})  \\
    {} & = & {{\left( \frac{\sqrt{2}}{2} \right)}^{2}}+{{\left( \frac{\sqrt{2}}{2} \right)}^{2}}  \\
    {} & = & 1  \\
    \end{array}\]
  3. Ora,
    \[\begin{array}{*{35}{l}}
    sen\,\frac{19\pi }{3}+\cos (-3\pi )-tg\,(-\frac{15\pi }{4})+\cos (-\frac{11\pi }{6}) & = & sen\,(6\pi +\frac{\pi }{3})+\cos (-4\pi +\pi )-tg\,(-4\pi +\frac{\pi }{4})+\cos (-2\pi +\frac{\pi }{6})  \\
    {} & = & \frac{\sqrt{3}}{2}-1-1+\frac{\sqrt{3}}{2}  \\
    {} & = & \sqrt{3}-2  \\
    \end{array}\]
  4. Ora,
    \[\begin{array}{*{35}{l}}
    tg\,\frac{13\pi }{4}+\cos 6\pi -sen\,(-\frac{7\pi }{2})+\cos (-\frac{17\pi }{3}) & = & tg\,\frac{\pi }{4}+1-sen\,(-4\pi +\frac{\pi }{2})+\cos (-6\pi +\frac{\pi }{3})  \\
    {} & = & 1+1-1+\frac{1}{2}  \\
    {} & = & \frac{3}{2}  \\
    \end{array}\]

You may also like...

Deixe um comentário

O seu endereço de email não será publicado. Campos obrigatórios marcados com *

This site uses Akismet to reduce spam. Learn how your comment data is processed.